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AN EXTENSION OF THE NEW OBJECTIVE WEIGHT 

ASSESSMENT METHODS CILOS AND IDOCRIW TO FUZZY 

MCDM 

 
Abstract. Weights of criteria are playing a significant role in the wide range of 

MCDM (multiple criteria decision making) evaluation models. Results of evaluation 

significantly depend on magnitudes of weights as they proportionally transmit importance 

of each criterion to the final result of evaluation along with values of criteria placed in the 

decision matrix. There are two broad categories of methods for eliciting weights of criteria, 

subjective and objective. The former methods are based on opinions of experts, while the 

latter group of methods reflects the structure of data. The entropy method can be found 

within the most popular group of objective methods; it reflects the degree of diversification 

among values of criteria. Shortcomings of the entropy method are explained in the paper, 

especially the ones that are arising in the way of its extension to fuzzy MCDM. The authors 

propose extension of the earlier introduced criterion impact loss (CILOS) method to fuzzy 

MCDM that mitigate some shortcomings of the entropy. The latter method is based on the 

losses of values of criteria comparing to the ones that belong to the alternative with the best 

values. In the paper extension FIDOCRIW (Fuzzy Integrated Determination of Objective 

CRIteria Weights ) of the combination of both above-mentioned methods, entropy and 

CILOS, to fuzzy MCDM is proposed. Obstacles related to such extension are outlined and 

described. The paper provides a detailed explanation of the obstacles of extending the 

methods to fuzzy MCDM. Proposed in the paper FIDOCRIW method retains idea of the 

IDOCRIW method of combining the entropy with CILOS method. In contrast, the 

FIDOCRIW processes fuzzy numbers instead of real ones. This comprises uncertainty of 

data. The method allows to fully retain the fuzzy structure of the decision matrix along the 

full framework of the method. Resulting fuzzy weights allow to use the full scope of fuzzy 

MCDM methods, e.g. to comprise FIDOCRIW fuzzy weights with the fuzzy data that 

describe alternatives. Thus evaluation of alternatives in the environment with a degree of 

uncertainty can be performed. 

Keywords: MCDM, criteria, objective weight, integrated determination, FCILOS, 

F-entropy, FIDOCRIW methods.  
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1. Introduction 

 

MCDM models, in general, are deterministic. This means that an exact 

input determines the exact output for a chosen MCDM method. The input for the 

majority of MCDM methods is a decision matrix R=‖𝑟𝑖𝑗‖. It consists of data that 

characterizes evaluated alternatives A1, A2,..., An in terms of criteria R1, R2, ..., Rm. 

where i=1,2,..., n; j=1,2,... m; m is the number of criteria while n is the number of 

alternatives (Hwang andYoon, 1981; Mardani et al, 2017; Mardani et al, 2015; 

Vinogradova, 2019; Zavadskas and Turskis, 2011). Criteria are chosen depending 

on the specific problem faced by a decision-maker, the aim and objects of 

evaluation. Another input is the vector of weights Ω=(𝜔𝑗),which reflects 

importance of criteria in the scale of real numbers. These two inputs generate a 

determined outcome that ranks alternatives in the order of attractiveness. Such 

ranking is based on values of a cumulative criterion of a MCDM method that 

comprises values from the decision-matrix and weights.  

The MCDM methods usually are lacking tools for dealing with uncertainty. 

Among non-fuzzy MCDM methods that have an effective inherent tool that deals 

with uncertainty the PROMETHEE method could be named. Choice of the proper 

preference function, either the multistage or the V-shape with indifference, could 

deal with the uncertainty in statistical data either by classifying data by intervals 

(multistage preference function case) or by curtailing extremes (V-shape with 

indifference preference function) (Podvezko and Podviezko, 2010). 

Both MCDM methods and methods that allow to elicit weights are actively 

being actively developed. An extensive overview of MCDM methods is available 

in (Zavadskas and Podvezko, 2016). Weights of criteria form an essential part of 

MCDM methods considerably influencing the result of multiple criteria evaluation. 

Development of such methods is of great theoretical and practical importance. 

Currently there are many contemporary methods that allow to elicit weights. For 

example, Delphi method(Hwang and Lin, 1987), Expert judgment method 

(Zavadskas et al, 2012), Analytic Hierarchy Process (AHP) (Satty, 1980), Step–

wise weight assessment ratio analysis (SWARA) (Kersuliene et al, 2010;Zavadskas 

and Podvezko, 2016, etc.). A more significant criterion will be assigned a larger 

weight and vice-versa. By definition the sum of weights should be equal to unity: 

∑ 𝜔𝑗
𝑚
𝑗=1  = 1. In such cases when the above does not hold, weights should be 

normalized. 

Methods that elicit weights can be categorized into two categories: 

subjective and objective. The former, subjective, methods are based on opinions of 

experts, while the latter group reflects the structure of data. Even though they are 

presently more popular than the objective ones, the latter methods are being 

intensively developed and are gaining increasing recognition.  

Objective methods analyze data in various ways. Among popular methods 

of eliciting weights are: LINMAP methodm (Hwang and Yoon, 1981); 

mathematical programming methods (Pekelman and Sen, 1974); methods that use 
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correlation coeficient and standard deviation (Parfenova et al, 2016), least squares 

comparison (Wang and Lee, 2009) etc. (Zavadskas and Podvezko, 2016). The 

classic entropy method, another objective method, determines the degree of 

diversification among values of criteria (Hwang and Yoon, 1981). The authors 

proposed a weight-correction method based on Bayes method (Vinogradova et al, 

2018). The entropy method can be distinguished as one of the most popular of 

objective method. In the authors‘ proposed the CILOS method (Zavadskas and 

Podvezko, 2016) structure of the data is analyzed in terms of losses of values of 

criteria. They are compared to the ones belonging to an alternative with the best 

values. These differeces directly influence weights (Cereska et al, 2018). The 

hybrid method IDOCRIW (Zavadskas and Podvezko, 2016) combines both entropy 

and CILOS methods. Shortcomings of the entropy revealed in (Zavadskas and 

Podvezko, 2016) are mitigated by the CILOS method.  

The paper is devoted to developing of objective fuzzy-methods of eliciting 

weights; and to the analysis of the F-entropy method. 

 

2. Fuzzy numbers and operations with such numbers 

 

The fuzzy numbers were introduced by L. A. Zadeh (1965). The 

underlying theory well mingles with the theory of multiple criteria decision-

making. It enhances it and extends to the realm of the uncertain data. Thus, a 

possibility to use intervals instead of precise data expressed in terms of a single 

number emerges. In addition, there is an option to assign the most probable value 

not even in the centre of the interval. Fuzzy numbers are often found in the 

theoretical and empirical literature from the realm of MCDM (Ecer, 2018; Hu et al, 

2018; KutluGundogdu and Kahraman, 2019; Mardani et al, 2015; Rezaei and Ortt, 

2013; Stanujkic et al, 2019) etc.  

Triangle fuzzy numbers are used most often. Other popular shapes are 

trapezoids and analogs of the Gaussian curve. We will present illustrations with 

triangle fuzzy numbers below. Such numbers are defined by three numbers as 

follows: M=(l,m,u): l is the lower boundary; m – is the most probable value; and u 

– is the higher boundary. Naturally, 𝑙 ≤ 𝑚 ≤ 𝑢; usually (𝑙 < 𝑚 < 𝑢). 
A fuzzy number is characterized by its triangle membership function  

𝜇𝑀(𝑥) = {

𝑥−𝑙

𝑚−𝑙
 𝑖𝑓 𝑥 𝜖 [𝑙,𝑚]

𝑥−𝑢

𝑚−𝑢
 𝑖𝑓  𝑥 𝜖 [𝑚, 𝑢]

0 𝑖𝑓  𝑥 ∉ [𝑙, 𝑢].

      (1) 

We will describe only the operations that are used in the paper.  

The sum of two fuzzy numbers M1 = (l1, m1, u1) and M2 = (l2, m2, u2) is 

defined as: 

 𝑀1⊕ 𝑀2 = (l1+l2, m1+m2, u1+u2);   (2) 
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The difference of two fuzzy numbers M1 = (l1, m1, u1) and M2 = (l2, 

m2, u2) is defined as: 

 𝑀1⊝𝑀2 = (𝑙1 − 𝑙2, 𝑚1 −𝑚2, 𝑢1 − 𝑢2);  (3) 

The multiplication of two fuzzy numbers M1 = (l1, m1, u1) and M2 = (l2, m2, 

u2) is defined as: 

 𝑀1⨂ 𝑀2 = (𝑙1𝑙2,𝑚1𝑚2, 𝑢1𝑢2),               (4) 

The multiplicationby a number𝝀 is: 

𝝀⨂𝑀1 = (𝝀, 𝝀, 𝝀) ⨂(l1, m1, u1)= (𝝀 l1, 𝝀 m1, 𝝀 u1);   (5) 

The division of two fuzzy numbers M1 = (l1, m1, u1) and M2 = (l2, m2, u2) 

isdefined as: 

 𝑀1 ÷𝑀2 = (𝑙1/𝑢2,𝑚1/𝑚2, 𝑢1/𝑙2);   (6) 

The inverse of the fuzzy number M1 = (l1, m1, u1) is defined as: 

 𝑀1
−1  =  (𝑙1, 𝑚1, 𝑢1)

−1= (1/𝑢1, 1/𝑚1, 1/𝑙1).    (7) 

The natural logarithm of the fuzzy number M1 = (l1, m1, u1) is defined as: 

 ln(𝑀1) = (ln(𝑙1) , ln(𝑚1) , ln(𝑢1)).    (8) 

We can observe that the result of the above operations is, again, the set of 

three numbers with a corresponding membership function. 

 

3. Defuzzification of fuzzy numbers 

 

Defuzzification is a mapping of fuzzy numbers to the scale of real 

numbers. It is, of course, possible to apply standard MCDM methods after the 

defuzzification, but such option would lead to loss of important information about 

the inherent uncertainty, which can affect the result. Contrary, in fuzzy MCDM 

methods, values of criteria, weights, all intermediate results, as well as the final 

result, can be expressed in fuzzy numbers.  

One of the most popular and simplest methods of defuzzification is the 

Center of Gravity (COG) method. Defuzzification is carried out using the 

following formula (Rezaei and Ortt, 2013): 

 

𝑅 =
(𝑢−𝑙)+(𝑚−𝑙)

3
+ 𝑙 =

𝑙+𝑚+𝑢

3
,      (9) 

 

where M=(l,m,u). 

 

4. Objective fuzzy methods of eliciting weights 

 

Suppose the decision matrix with elements �̃�𝑖𝑗 = (𝑟𝑖𝑗
𝐿 , 𝑟𝑖𝑗

𝑀 , 𝑟𝑖𝑗
𝑈) is provided. 

In order to apply MCDM methods we will need objective fuzzy weights denoted as  

�̃� = ‖�̃�𝑗‖ = (�̃�1, �̃�2, … , �̃�𝑚) =  ‖𝜔𝑗
𝐿, 𝜔𝑗

𝑀 , 𝜔𝑗
𝑈‖ =

 ((𝜔1
𝐿,𝜔1

𝑀, 𝜔1
𝑈) ,(𝜔2

𝐿,𝜔2
𝑀 , 𝜔2

𝑈) ,...,(𝜔𝑚
𝐿 , 𝜔𝑚

𝑀 , 𝜔𝑚
𝑈 ) ), i= 1,… , 𝑛, 𝑗 = 1,… ,𝑚,  

 



 

 

 

 

 

 
An Extension of the New Objective Weight Assessment Methods CILOS and 

IDOCRIW to Fuzzy MCDM 

__________________________________________________________________ 

63 

DOI: 10.24818/18423264/54.2.20.04 

where m is the number of criteria , and n is the number of alternatives. Some of 

such methods are presented below. 

 

4.1. Fuzzy entropy method F-Entropy 
 

The entropy method was proposed by Shannon (1948). 

Entries of the normalized decision matrix are fuzzy numbers �̃�𝑖𝑗 = (𝑟𝑖𝑗
𝐿 , 

𝑟𝑖𝑗
𝑀 , 𝑟𝑖𝑗

𝑈), 𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚,  where m-is the number of criteria, and n- is the 

number of alternatives being evaluated. 

Entropy weights are elicited in the following steps. 

1. Values of criteria are normalized using the following formula: 

�̃�𝑖𝑗 =
�̃�𝑖𝑗

∑ �̃�𝑖𝑗
𝑛
𝑖=1

= (
𝑟𝑖𝑗
𝐿

∑ 𝑟𝑖𝑗
𝑈𝑛

𝑖=1

 , 
𝑟𝑖𝑗
𝑀

∑ 𝑟𝑖𝑗
𝑀𝑛

𝑖=1

, 
𝑟𝑖𝑗
𝑈

∑ 𝑟𝑖𝑗
𝐿𝑛

𝑖=1

) =  (𝑠𝑖𝑗
𝐿 , 𝑠𝑖𝑗

𝑀, 𝑠𝑖𝑗
𝑈).       (10) 

2. Entropy level of every criterion is calculated as follows: 

�̃�𝑗=(−1/lnn)∑ 𝑟𝑖�̃�
𝑛
𝑖=1 · ln𝑟𝑖�̃� = (𝑒𝑗

𝐿, 𝑒𝑗
𝑀, 𝑒𝑗

𝑈),         (11) 

(j=1,2,..., m).   

3. Non-normalized entropy weights are calculated using the following 

formula: 

�̃�𝑗= 1 –�̃�𝑗= (1 − 𝑒𝑗
𝐿, 1−𝑒𝑗

𝑀, 1 − 𝑒𝑗
𝑈) =  (𝑑𝑗

𝐿, 𝑑𝑗
𝑀 , 𝑑𝑗

𝑈)        (12) 

4. After normalization fuzzy weights are obtained: 

�̃�𝑗= 
�̃�𝑗

∑ �̃�𝑗
𝑚
𝑗=1

 =(
𝑑𝑗
𝐿

∑ 𝑑𝑗
𝑈𝑚

𝑗=1

 ,
𝑑𝑗
𝑀

∑ 𝑑𝑗
𝑀𝑚

𝑗=1

,
𝑟𝑖𝑗
𝑈

∑ 𝑑𝑗
𝐿𝑚

𝑗=1

) =  (𝑊𝑗
𝐿, 𝑊𝑗

𝑀 ,𝑊𝑗
𝑈)        (13) 

A decision-maker should be aware about the following particularity of the 

entropy method for its effective use.  

Proposition. Results of the F-entropy can be negative numbers.  

Proof.  

It is known that normalized entropy values 
𝑟𝑖𝑗
𝑀

∑ 𝑟𝑖𝑗
𝑀𝑛

𝑖=1

at the point M belong to 

the interval [0,1]: 0 ≤ 𝑒𝑗
𝑀  ≤ 1.  

Now, in the fuzzy case, at the point U, since 

∑ 𝑟𝑖𝑗
𝑈𝑛

𝑖=1 >∑ 𝑟𝑖𝑗
𝐿𝑛

𝑖=1  it follows that 
𝑟𝑖𝑗
𝑈

∑ 𝑟𝑖𝑗
𝐿𝑛

𝑖=1

>
𝑟𝑖𝑗
𝑈

∑ 𝑟𝑖𝑗
𝑈𝑛

𝑖=1

. Therefore, entropy 

𝑒𝑗
𝑈 = (−1/lnn)∑

𝑟𝑖𝑗
𝑈

∑ 𝑟𝑖𝑗
𝐿𝑛

𝑖=1

𝑛
𝑖=1 · ln

𝑟𝑖𝑗
𝑈

∑ 𝑟𝑖𝑗
𝐿𝑛

𝑖=1

 can be larger than 1,𝑑𝑗
𝑈= 1 − 𝑒𝑗

𝑈, and the 

weight 𝑊𝑗
𝑈 will be negative.  

There were numerous such cases encountered in practice. In Section 6 

below an illustrative case-study is presented.  

This particularity of the F-entropy method restricts usage of the method. 

The FCILOS method is free from such a shortcoming. 
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4.2. The fuzzy method of the criterion impact loss FCILOS 
 

The newly introduced method CILOS of the criterion impact loss assesses 

losses of each criterion against the alternative with the optimal (maximal or 

minimal) value. The logic, ideas and stages of the method were described in 

(Zavadskas and Podvezko, 2016). 

At the first stage minimizing criteria are transformed to the maximizing 

ones using formula (14) to map the best value of a criterion to the largest value. 

Values of maximizing criteria remain unchanged.  

�̅�𝑖𝑗 = 
min
𝑖
�̃�𝑖𝑗

�̃�𝑖𝑗
 =
(min
𝑖
𝑟𝑖𝑗
𝐿 , min

𝑖
𝑟𝑖𝑗
𝑀, min

𝑖
𝑟𝑖𝑗
𝑈)

(𝑟𝑖𝑗
𝐿 ,𝑟𝑖𝑗

𝑀,𝑟𝑖𝑗
𝑈 )

 = (
min
𝑖
𝑟𝑖𝑗
𝐿

𝑟𝑖𝑗
𝑈  ,

min
𝑖
𝑟𝑖𝑗
𝑀

𝑟𝑖𝑗
𝑀  ,

min
𝑖
𝑟𝑖𝑗
𝑈

𝑟𝑖𝑗
𝐿  )      (14) 

𝑟𝑖𝑗
𝐿 ≠ 0, 𝑟𝑖𝑗

𝑀 ≠ 0, 𝑟𝑖𝑗
𝑈 ≠ 0. 

The new matrix is denoted as  

𝑋 ̃ = ‖�̃�𝑖𝑗‖ =  (𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑀 , 𝑥𝑖𝑗
𝑈 ). 

Largest values of each criterion in each column of the matrix are found: 

�̃�𝑗=  max
𝑖
�̃�𝑖𝑗 =(max

𝑖
𝑥𝑖𝑗
𝐿 , max

𝑖
𝑥𝑖𝑗
𝑀 , max

𝑖
𝑥𝑖𝑗
𝑈) = (𝑥𝑘𝑗(𝐿),𝑗

𝐿 , 𝑥𝑘𝑗(𝑀),𝑗
𝑀 , 𝑥𝑘𝑗(𝑈),𝑗

𝑈  ), 

where𝑘𝑗(𝐿), 𝑘𝑗(𝑀), 𝑘𝑗(𝑈)) are numbers of rows of matrices L, M, U of the j-th 

column corresponding to the largest elements. 

The matrix 𝐴 ̃ = ‖�̃�𝑖𝑗‖ =  (𝑎𝑖𝑗
𝐿 , 𝑎𝑖𝑗

𝑀 , 𝑎𝑖𝑗
𝑈  ) is consisting of values �̃�𝑘𝑗𝑗 of the  

kj–th rows of the matrix 𝑋 ̃ which correspond to maxima �̃�𝑗𝑗of the j-th criterion : 

�̃�𝑗𝑗 = �̃�𝑗 = (𝑥𝑗
𝐿, 𝑥𝑗

𝑀 , 𝑥𝑗
𝑈 ), �̃�𝑖𝑗=�̃�𝑘𝑗𝑗 (i,j = 1,2,...,m; m– the number of criteria). 

Three square matrices AL, AM, AU are formed from elements of the 

matrix 𝐴 ̃, which contain maximal values of each criterion on the main diagonal.  

We note that the matrix 𝐴 ̃may contain identical rows in case several 

largest values were found in the same row that belong to the same alternative.  

The matrices of relative losses 𝑃𝐿, 𝑃𝑀and𝑃𝑈 are formed.Their entries 

belong to the fuzzy matrix 𝑃 ̃ = ‖�̃�𝑖𝑗‖ =  (𝑝𝑖𝑗
𝐿 , 𝑃𝑖𝑗

𝑀 , 𝑝𝑖𝑗
𝑈  )with the following 

elements: 

�̃�𝑖𝑗 = 
�̃�𝑗−�̃�𝑖𝑗

�̃�𝑗
 = 
(𝑥𝑗
𝐿 − 𝑎𝑖𝑗

𝐿 ,   𝑥𝑗
𝑀− 𝑎𝑖𝑗

𝑀,   𝑥𝑗
𝑈− 𝑎𝑖𝑗

𝑈 )

(𝑥𝑗
𝐿,𝑥𝑗

𝑀,𝑥𝑗
𝑈 )

  = (
𝑥𝑗
𝐿 − 𝑎𝑖𝑗

𝐿

𝑥𝑗
𝑈 ,

𝑥𝑗
𝑀− 𝑎𝑖𝑗

𝑀

𝑥𝑗
𝑀 ,

𝑥𝑗
𝑈− 𝑎𝑖𝑗

𝑈

𝑥𝑗
𝐿 )      (15) 

(�̃�𝑖𝑖 = 0)   (i,j = 1,2,...,m). 

Elements �̃�𝑖𝑗 of the matrix 𝑃 ̃contain relative losses of each criterion 

between values of alternatives and values of the alternative with the best i-th value. 

The method produces an increased weight for the criterion with a smaller loss 

while the resulting weight will appear to be smaller in the case if the loss is large. 

Thus the requirement of a criterion with larger losses to be less significant is 

fulfilled.  

It was proved that (Mirkin, 1979): 
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 in case losses of the j-th criterion increase k times the corresponding weight 

will decrease k times, while alterations of other values will not influence 

the j-th weight; 

 the ratio qi/qj between two weights i and j will not change if values of a 

criterion l (l≠i, l≠j) are altered. 

 

Following the second feature of the method the system (16) is created 

qipij = qjpji,     (16)  

which has m(m–1)/2 equations with m unknown variables. Thus it can be 

inconsistent. The system has the only solution when m(m–1)/2=m, or when m=3. 

Further, it was proved (Mirkin, 1979) that the system of linear equations 

(16) becomes consistent if the following equations are added: 

  𝑞𝑖 ∑ 𝑝𝑖1
𝑚
𝑖=1 =∑ 𝑞𝑗𝑝𝑖𝑗

𝑚
𝑗=1 .          (17) 

The latter equations represent the idea that losses of the i-th criterion are 

equal to the sum of losses of all other criteria; they are compensated by the 

remaining criteria.  

The system (16–17) can be re-written in the fuzzy form (18) using the 

vector of weights  𝑞�̃� = (𝑞𝑗
𝐿, 𝑞𝑗

𝑀 , 𝑞𝑗
𝑈) (j = 1,2,...,m) as the unknown:  

�̃�𝒒𝑻= 0,             (18) 

where the matrix  �̃�is: 

 

�̃�=  

(

 
 
 
 
 

   −∑ �̃�𝑖1
𝑚
𝑖=1 �̃�12           …  �̃�1𝑚

�̃�21           − ∑ �̃�𝑖2
𝑚
𝑖=1      …  �̃�2𝑚

…

�̃�𝑚1�̃�𝑚2   …  − ∑ �̃�𝑖𝑚
𝑚
𝑖=1 )

 
 
 
 
 

.                                   (19) 

with entries�̃�𝑖𝑗 = (𝑝𝑖𝑗
𝐿 , 𝑃𝑖𝑗

𝑀 , 𝑝𝑖𝑗
𝑈  ). 

Three following determined systems of linear equations (20) are solved. 

𝐹𝐿𝒒𝑻= 0, 𝐹𝑀𝒒𝑻= 0, 𝐹𝑈𝒒𝑻= 0.           (20) 

Its solution provides fuzzy weights 𝑞�̃� = (𝑞𝑗
𝐿, 𝑞𝑗

𝑀, 𝑞𝑗
𝑈). 

There are infinite number of solutions existing of a homogenous system of 

m equations and n unknowns (20).Ultimate weights are obtained by normalization. 
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4.3. FIDOCRIW method of hybrid objectives weights 
 

Using the idea of combining weights produced by the above-described 

methods with different inherent philosophy we can obtain combined weights 

�̃�𝑗=(𝑊𝑗
𝐿, 𝑊𝑗

𝑀,𝑊𝑗
𝑈) obtained by the F-entropy method with weights  

𝑞�̃� = (𝑞𝑗
𝐿, 𝑞𝑗

𝑀 , 𝑞𝑗
𝑈)and the ones obtained by the FCILOS method. Hybrid fuzzy 

weights  𝛺�̃� = (𝜔𝑗
𝐿, 𝜔𝑗

𝑀, 𝜔𝑗
𝑈)are obtained using the following multiplication (21): 

𝛺�̃�= 
𝑞�̃� ⨂�̃�𝑗

∑ 𝑞�̃� ⨂�̃�𝑗
𝑚
𝑗=1

  = (
𝑞𝑗
𝐿𝑊𝑗

𝐿

∑ 𝑞𝑗
𝑈𝑊𝑗

𝑈𝑛
𝑗=1

𝑞𝑗
𝑀𝑊𝑗

𝑀

∑ 𝑞𝑗
𝑀𝑊𝑗

𝑀𝑛
𝑗=1

,
𝑞𝑗
𝑈𝑊𝑗

𝑈

∑ 𝑞𝑗
𝐿𝑊𝑗

𝐿𝑛
𝑗=1

) =  (𝜔𝑗
𝐿, 𝜔𝑗

𝑀 , 𝜔𝑗
𝑈).       (21) 

The latter weights encompass the degree of diversification among values of 

criteria because of using the entropy. In addition to it, in (Zavadskas and Podvezko, 

2016) it was demonstrated that shortcomings of the entropy method will be 

compensated by the CILOS method because there is a logical inverse relationship 

between losses related to other criteria and the degree of diversification. 

 

5. A case study involving the FCILOS, F-ENTROPY, and IDOCRIW  

    methods 
 

We will apply the above-described fuzzy methods to the case-study 

described in Zavadskas and Podvezko, 2016. Thedata is presented in Table 1;it was 

a non-fuzzy case. We will compare both fuzzy and non-fuzzy cases and test 

stability of the methods.  

We briefly describe the problem outlined in (Zavadskas and Podvezko, 

2016). Some alternatives office building available for sale are considered by a 

company. There are four variants A1, A2, A3, A4of office location. The offices are 

evaluated by the four attributes: 

1) R1 – price ($10,000), 

2) R2 – office area (m2), 

3) R3 – distance from home to work (km), 

4) R4 – office location quality (in points). 

The attributes R2 and R4 are maximizing, while R1 and R3 are minimizing. 

The data concerning office purchasing for a firm is presented in Table 1. 

 

Table 1. Date of office purchasing 

Alternatives Attributes 

R1 R2 R3 R4 

A1 3.0 100 10 7 

A2 2.5 80 8 5 

A3 1.8 50 20 11 

A4 2.2 70 12 9 

 min max min max 
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The above matrix was transformed into the fuzzy one (Table 2). 

 

Table 2.Fuzzy date of office purchasing 

Alternatives Attributes 

R1 R2 R3 R4 

A1 (2.95, 3.0, 

3.03) 

(96, 100, 

103) 

(9.5, 10, 11) (6.8, 7, 7.5) 

A2 (2.47, 2.5, 

2.55) 

(78, 80, 83) (7.5, 8, 9) (4.9, 5, 5.2) 

A3 (1.77, 1.8, 

2.85) 

(49, 50, 52) (19, 20, 22) (10.8, 11 

11.3) 

A4 (2.15, 2.2, 

2.23) 

(68, 70, 71) (11, 12, 14) (8.7, 9, 9.4) 

 min max min max 

 
As it will be observed, results of calculations (Tables 3-9) at the central 

point M of the fuzzy data yield all intermediate results and weights exactly the 

same as in the previously calculated case with the non-fuzzy data (Zavadskasand 

Podvezko, 2016).  

 

5.1. Eliciting weights using the FCILOS method 

 

In accordance with the method of criterion impact loss (CILOS) all 

minimizing criteria should be transformed to the maximizing ones, for example, 

using formula (14). We have two minimizing criteria R1 and R3in our case-study 

that need to be transformed. Transformed values are presented in Table 3. This is 

an optional visualization made solely for convenience purposes of the graphical 

observation of losses as they are essential part of the method. 

 

Table 3. Transformation of fuzzy values of the minimizing criteria R1andR3to 

the maximizing ones 

Alternatives R1 R2 R3 R4 

A1 (0.584, 0.6, 

0.627) 

(75, 100, 

110) 

(0.682, 0.8, 

0.947) 

(4, 7, 9) 

A2 (0.694, 0.720, 

0.740) 

(65, 80, 105) (0.843, 1.0, 

1.200) 

(3, 5, 8) 

A3 (0.957, 1.0, 

1.045) 

(40, 50 70) 0.341, 0.4, 0.474) 9, 11 14) 

A4 (0.794, 0.818, 

0.860) 

(55, 70, 85) (0.536, 0.667, 

0.818) 

(7, 9, 12) 

 max max max max 
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Normalized by formula (10) values contained in Table 3 are presented in 

Table 4. 

Table 4. Normalized Fuzzy values of criteria 

Alternatives R1 R2 R3 R4 

A1 (0.178, 0.191, 

0.207) 

(0.311, 0.333, 

0.354) 

(0.198, 0.279, 

0.396) 

(0.204, 

0.219, 0.240) 

A2 (0.212, 0.229, 

0.247) 

(0.252, 0.267, 

0.285) 

(0.242, 0.349, 

0.502) 

(0.147, 

0.156, 0.167) 

A3 (0.292, 0.319, 

0.345) 

(0.159, 0.167, 

0.179) 

(0.099, 0.140, 

0.198) 

(0.323, 

0.344, 0.362) 

A4 (0.242, 0.261, 

0.284) 

(0.220, 0.233, 

0.244) 

(0.156, 0.233, 

0.342) 

(0.260, 

0.281, 0.301) 

The CILOS method at the subsequent step is applied to the lower and 

higher boundaries L and U, and to the most probable – central value M. We obtain 

the following resulting matrices 𝑅𝑁𝐿, 𝑅𝑁𝑀and𝑅𝑁𝑈: 

𝑅𝑁𝐿 = (

0.178  0.311  0.198  0.204
0.212  0.252  0.242  0.147
0.292  0.159  0.099  0.329
0.242  0.220  0.156  0.260

), 

𝑅𝑁𝑀 = (

0.191  0.333  0.279  0.219
0.229  0.267  0.349  0.156
0.319  0.167  0.140  0.344
0.261  0.233  0.233  0.281

), 

𝑅𝑁𝑈 = (

0.207  0.354  0.396  0.240
0.247  0.285  0.502  0.167
0.345  0.179  0.198  0.362
0.284  0.244  0.342  0.301

). 

 

Now the algorithm of the CILOS method is applied to the fuzzy case. The 

maximal values of each criterion (or each column) in each matrix 𝑅𝑁𝐿, 

𝑅𝑁𝑀and𝑅𝑁𝑈 are found. For example, in matrix 𝑅𝑁𝐿 the maximal value of the 

criterion R1is 0.292 (3-rd row), the maximal value of the criterion R2 is 0.311 (1-st 

row.), etc. 

Then, the matrix 𝐴 ̃ = ‖�̃�𝑖𝑗‖ =  (𝑎𝑖𝑗
𝐿 , 𝑎𝑖𝑗

𝑀 , 𝑎𝑖𝑗
𝑈  ) is compiled by forming 

separately matrices 𝑨𝑳, 𝑨𝑴and 𝑨𝑼, from the rows found at the previous step. From 

the matrix 𝑅𝑁𝐿 the 3-rd row, which corresponds to the maximal value of the 
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criterion R1, is taken. The row is placed to the first position in the matrix 𝑨𝑳. The 

second row of the matrix 𝑨𝑳is formed by taking the 1-st row, which corresponds to 

the place of the maximal value of the criterion R2, found in the row of the matrix 

𝑅𝑁𝐿, etc. Matrices 𝑅𝑁𝑀 and 𝑅𝑁𝑈 are formed similarly.  

The resulting matrices appear to be as follows: 

𝑨𝑳 = (

0.292  0.159  0.099  0.323
0.178  0.311  0.198  0.204
0.212  0.252  0.242  0.147
0.292  0.159  0.099  0.323

), 

𝑨𝑴 = (

0.319  0.167  0.140  0.344
0.191  0.333  0.279  0.219
0.229  0.267  0.349  0.156
0.319  0.167  0.140  0.344

), 

𝑨𝑼 = (

0.345  0.179  0.197  0.362
0.207  0.354  0.396  0.240
0.247  0.285  0.502  0.167
0.345  0.179  0.198  0.362

). 

The matrices of relative losses 𝑷𝑳, 𝑷𝑴and𝑷𝑼 are formed using the 

following formula: 

𝑝𝑖𝑗 = 
�̃�−�̃�𝑖𝑗

�̃�
 = (𝑝𝑖𝑗

𝐿 , 𝑃𝑖𝑗
𝑀, 𝑝𝑖𝑗

𝑈  )  (𝑝𝑖𝑖= 0). 

 

𝑷𝑳 = 

(

  
 

0           0.430            0.285               0
 0.329           0                   0.088         0.331    
0.232        0.165                  0             0.488
     0           0.430            0.285              0  

)

  
 

,  

𝑷𝑴 = 

(

  
 

0           0.500            0.600               0
 0.400           0                   0.200         0.364    
0.280        0.200                  0             0.545
     0           0.500            0.600              0  

)

  
 

, 

𝑷𝑼 = 

(

  
 

0           0.564            1.253               0
 0.473           0                   0.436         0.377    
0.335        0.221                  0             0.605
     0           0.564            1.253              0  

)

  
 

. 
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Using formulae (16–18) the matrices of the homogeneous 𝐹𝐿, 𝐹𝑀and𝐹𝑈 

are formed: 

𝐹𝐿= (

−0.561    0.4300.285  0.000
0.329 − 1.024  0.088  0.331

0.232       0.165   − 0.659  0.488
  0.000    0.4300.285   − 0.818

), 

 

𝐹𝑀= (

−0.680     0.5000.600      0.000
0.400 − 1.200  0.200  0.364
0.280    0.200   − 1.400  0.545
0.000    0.5000.600   − 0.909

), 

 

𝐹𝑈 = (

−0.809     0.5641.253      0
0.473 − 1.349  0.436  0.377
0.335    0.201   − 2.944  0.605
0   0.564     1.253   − 0.981

). 

In the main diagonal of each matrix F the corresponding element 

𝑓𝑖𝑖represents the total loss of the i–th criterion, which has a direct influence on the 

weights. For example, observation of losses in the main diagonal of the matrix 

𝐹𝐿suggests that the criterion R2at the point L will have a smaller weight because of 

the larger losses, while criteria R1and R3 will have the larger weight as it can be 

seen in Table 10. Similar observations are valid for matrices 𝐹𝑀 and 𝐹𝑈.  

The vector of weights  𝑞�̃� = (𝑞𝑗
𝐿, 𝑞𝑗

𝑀, 𝑞𝑗
𝑈)is found by normalizing values of 

solutions of systems of the following equations: 

𝐹𝐿𝒒𝑻= 0, 𝐹𝑀𝒒𝑻= 0, 𝐹𝑈𝒒𝑻= 0. 

The values of the resulting vector of weights are presented in Table 5. 

 
Table 5. FCILOS weights of criteria 

  𝑞1̃  𝑞2̃  𝑞3̃  𝑞4̃ 

L 0.300 0.189 0.305 0.206 

M 0.334 0.220 0.196 0.250 

U 0.351 0.242 0.118 0.289 

Average 0.328 0.217 0.206 0.211 

 
Because of the normalization, the requirement of the definition of weights 

is fulfilled: the sum of averages is equal to unity. 

The largest weight obtained by the criterion impact loss method has the 1-

st criterion R1. It can be observed that its total losses are smallest at all three points 

L, M and U.  
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5.2. Eliciting weights using the F-entropy method 

 

Values of criteria were taken from Table 3 and normalized by formula 

(10). The result of normalization is presented in Table 6. 

Table 6.Normalized values of criteria 
Alternatives R1 R2 R3 R4 

A1 (0.305,0.316, 

0.324) 

(0.311, 0.333, 

0.354) 

(0.170,0.200,0.234) (0.204, 0.219, 

0.240) 

A2 (0.256, 0.263, 

0.273) 

(0.252, 0.267, 

0.285) 

(0.134,0.160,0.191)  (0.147, 0.156,0.167) 

A3 (0.183, 0.189, 

0.198) 

(0.159, 0.167, 

0.179) 

(0.339,0.400,0.468) (0.323, 0.344,0.362) 

A4 (0.223, 0.232, 

0.239) 

(0.220, 

0.233,0.244)  

(0.196,0.240,0.298) (0.260,0.281,0.301) 

 
The fuzzy entropy is calculated using formula (11). Results are presented 

in Table 7. 

Table 7. Fuzzy values of entropy 

 R1 R2 R3 R4 

L 0.978 0.964 0.906 0.953 

M 0.988 0.979 0.955 0.971 

U 0.997 0.994 0.990 0.989 

 
The formula (13) is applied only in in the case if all fuzzy entropy weights 

are positive. This may not always be the case because at the point U the formula of 

the fuzzy normalization is 
𝑟𝑖𝑗
𝑈

∑ 𝑟𝑖𝑗
𝐿𝑛

𝑖=1

. Value of the entropy can be thus larger than 1 

that creates the negative weight, as it will happen in the case-study that is described 

below.  

Non-normalized entropy weights are calculated using the following 

formula at each point L, M, and U: 

�̃�𝑗= 1 –�̃�𝑗 

The result of calculations is presented in Table 8. 

 
Table 8. Non-normalized F-entropy weights 

 R1 R2 R3 R4 

L 0.022 0.036 0.094 0.047 

M 0.012 0.021 0.045 0.029 

U 0.003 0.006 0.010 0.011 
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Normalized entropy weights are calculated. Results are presented in 

Table 9. 

Table 9. F-entropy weights  
 R1 R2 R3 R4 

L 0.109 0.183 0.471 0.237 

M 0.115 0.198 0.418 0.269 

U 0.094 0.211 0.325 0.370 

Resulting values at the point M appear to be identical to the already 

calculated ones in(Zavadskas and Podvezko, 2016). 

5.3. Eliciting weights using the F-IDOCRIW method 

 

The weights obtained using the FCILOS (Table 5) and F-entropy (Table 9) 

methods are now combined into cumulative fuzzy weights. For the purpose of 

convenience, fuzzy weights previously obtained using the FCILOS and F-entropy 

methods are presented in Table 10. It is worth noting that 𝑞𝑗
𝐿 < 𝑞𝑗

𝑀 < 𝑞𝑗
𝑈 (Table 

10). 

 

Table 10. FCILOS and F-entropy weights 

 R1 R2 R3 R4 

L CILOS, 𝑞𝑗
𝐿  0.300 0.189 0.118 0.206 

Entropy, 𝑊𝑗
𝐿 0.094 0.183 0.325 0.237 

M CILOS, 𝑞𝑗
𝑀 0.334 0.220 0.196 0.250 

Entropy, 𝑊𝑗
𝑀 0.109 0.198 0.418 0.269 

U CILOS, 𝑞𝑗
𝑈 0.351 0.242 0.305 0.289 

Entropy, 𝑊𝑗
𝑈 0.115 0.211 0.471 0.370 

 

Results obtained after combining the FCILOS and F-entropy weights by 

formula (21) are presented in Table 11 as hybrid weights of the FIDOCRIW 

method.  

 

Table 11. Hybrid weights obtained using the FIDOCRIW method 

 R1 R2 R3 R4 

L 0.0825 0.1011 0.1121 0.1428 

M 0.1589 0.1901 0.3575 0.2935 

U 0.2692 0.3405 0.9580 0.7131 

Average weights 0.1702 0.2106 0.4757 0.3931 
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Hybrid weights compensate shortcomings of entropy method as there is a 

logical inverse relationship between losses related to other criteria and the degree 

of diversification (Zavadskas and Podvezko, 2016). Extension of the IDOCRIW to 

fuzzy MCDM allows to use the weights in fuzzy MCDM methods. It is important 

as weights form an essential part of such methods.  

6. Problems to the usage of the F-entropy method 

It is known that values of the entropy are lying within the interval from 0 to 

1;(0 ≤  𝐸𝑗 ≤ 1 (j=1,2,..., m)) (Hwang and Yoon, 1981;Zavadskas and Podvezko, 

2016). Consequently, non-normalized values of entropy weights dj= 1 –Ej  are non-

negative and entropy weights 𝑊𝑗 =
𝑑𝑗

∑ 𝑑𝑗
𝑚
𝑗=1

 are also non-negative. Fuzzy 

normalization 
𝑟𝑖𝑗
𝑈

∑ 𝑟𝑖𝑗
𝐿𝑛

𝑖=1

 at the point U could create the normalized value larger than 

one. And the fuzzy entropy method could produce negative weights, which is not 

acceptable.  

For example, take the following altered (increased) values of the 1-st 

criterion  

 

R1 

(2.8, 3.0, 3.3) 

(2.4, 2.5, 2.7) 

(1.7, 1.8, 2.1) 

(2.0, 2.2, 2.5) 

 

Value of entropy in this case is 𝑒1
𝑈 =  1.029 >  1.It produces a negative 

weight. In such cases weights could be determined completely in the fuzzy space 

by the FCILOS method. In addition, weights can be elicited from experts. 

7. Conclusions 

Uncertainty of data should have influence on results of MCDM evaluation. 

Uncertainty of data could be dealt with using fuzzy numbers and fuzzy methods.  

Objective weights that reflect the structure of data can be obtained using 

objective methods of eliciting weights from data. The popular entropy method 

assesses dominance of some criteria over other. The degree of dominance of the 

criteria with the best values influences weights of corresponding criteria. The 

method has shortcomings that are described in the paper; it may introduce 

distortions to the results of the MCDM evaluation as well.  

The criterion impact loss (CILOS) method accounts losses of values of 

corresponding criteria comparing to the ones that belong to the alternative with the 

best values. The method compensates shortcomings of the entropy method, 

described in the paper. 
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F-entropy weights at the point U may attain negative values thus creating 

limitations to the usage of the method. The FCILOS method is free from such 

limitations. 

The FIDOCRIW method combines two objective methods of eliciting 

weights, namely the F-entropy and FCILOS, while mitigating shortcomings of the 

F-entropy method appearing when the method is used in the fuzzy space.  

Fuzzy weights allow to use the complete fuzzy structure of the fuzzy 

decision matrix; to use fuzzy MCDM methods; to combine subjective and 

objective fuzzy weights to hybrid weights; and to evaluate alternatives in the 

environment of uncertainty. 
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